Transcriptomic response of maize primary roots to low temperatures at seedling emergence

نویسندگان

  • Mauro Di Fenza
  • Bridget Hogg
  • Jim Grant
  • Susanne Barth
چکیده

BACKGROUND Maize (Zea mays) is a C4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. METHODS In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h) and low temperature (12 °C for 16 h and 6 °C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. RESULTS Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. DISCUSSION We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of some PGRs on seedling emergence and CAT and POD activity of maize under low temperature stress. Hamid Reza Eisvand*, Nasim Fathi and Darioush Goudarzi

Low soil temperature is one of the reasons for poor germination and establishment of maize. The aim of this study was to evaluatethe possibilityof improvingthe seedling emergence and performance of maize under low temperature stress. A pot experiment was conducted on Zea maize (single cross 704) at 14 ºC as cold stress and seed treatments were priming with  200,  300 and 400ppm of GA3; 100, 200...

متن کامل

Seedling emergence response to temperature in safflower: measurements and modeling

Quantitative information about the response of seedling emergence totemperature for safflower (Carthamus tinctorius L.) is rare. The main objective ofthe present study was to develop a model for predicting days to emergence forsafflower as influenced by the temperature. In this regard, a field experiment with arange of sowing dates and four safflower cultivars were conducted to describe theresp...

متن کامل

Proteomics of Maize Root Development

Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of develo...

متن کامل

Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field

Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consu...

متن کامل

Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted earl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017